Unique Paths II

##题目

####Unique Paths II

Follow up for “Unique Paths”:

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

##解题思路
该题是Unique Paths的扩展,思路类似,只是这边要处理障碍。动态规划的思路可以见那题。

##算法代码
代码采用JAVA实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
public class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if(obstacleGrid==null || obstacleGrid.length==0)
return 0;
int m=obstacleGrid.length;
int n=obstacleGrid[0].length;
int[][] dp=new int[m][n]; //dp[i][j]表示从start到[i,j]位置不同路径条数
for(int i=0;i<m;i++)
for(int j=0;j<n;j++)
dp[i][j]=0;
for(int i=0;i<n;i++) //第一行障碍处理
{
if(obstacleGrid[0][i]!=1)
dp[0][i]=1;
else
break;
}

for(int j=0;j<m;j++) //第一列障碍处理
{
if(obstacleGrid[j][0]!=1)
dp[j][0]=1;
else
break;
}
for(int i=1;i<m;i++)
for(int j=1;j<n;j++)
{
if(obstacleGrid[i][j]==1) //如果该位置是障碍,则到达该点的路径条数为0
dp[i][j]=0;
else
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
return dp[m-1][n-1];
}
}

Comments