Search in Rotated Sorted Array II

##题目

####Search in Rotated Sorted Array II

Follow up for “Search in Rotated Sorted Array”:
What if duplicates are allowed?

Would this affect the run-time complexity? How and why?

Write a function to determine if a given target is in the array.

##解题思路
Search in Rotated Sorted Array唯一的区别是这道题目中元素会有重复的情况出现。不过正是因为这个条件的出现,出现了比较复杂的case,甚至影响到了算法的时间复杂度。原来我们是依靠中间和边缘元素的大小关系,来判断哪一半是不受rotate影响,仍然有序的。而现在因为重复的出现,如果我们遇到中间和边缘相等的情况,我们就丢失了哪边有序的信息,因为哪边都有可能是有序的结果。假设原数组是{1,2,3,3,3,3,3},那么旋转之后有可能是{3,3,3,3,3,1,2},或者{3,1,2,3,3,3,3},这样的我们判断左边缘和中心的时候都是3,如果我们要寻找1或者2,我们并不知道应该跳向哪一半。解决的办法只能是对边缘移动一步,直到边缘和中间不在相等或者相遇,这就导致了会有不能切去一半的可能。所以最坏情况(比如全部都是一个元素,或者只有一个元素不同于其他元素,而他就在最后一个)就会出现每次移动一步,总共是n步,算法的时间复杂度变成O(n).

##算法代码
代码采用JAVA实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public class Solution {
public boolean search(int[] A, int target) {
if(A==null||A.length==0) return false;
int l=0,r=A.length-1;
while(l<=r)
{
int mid=(l+r)/2;
if(target==A[mid]) return true;
if(A[mid]<A[r]){
if(target>A[mid]&&target<=A[r])
l=mid+1;
else
r=mid-1;
}
else if(A[mid]>A[r]){
if(target>=A[l]&&target<A[mid])
r=mid-1;
else
l=mid+1;
}else{
r--;
}
}
return false;
}
}

以上方法和Search in Rotated Sorted Array是一样的,只是添加了中间和边缘相等时,边缘移动一步,但正是这一步导致算法的复杂度由O(logn)变成了O(n).

Comments