Minimum Size Subarray Sum

##题目

####Minimum Size Subarray Sum

Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn’t one, return 0 instead.

For example, given the array [2,3,1,2,4,3] and s = 7,
the subarray [4,3] has the minimal length under the problem constraint.

click to show more practice.

#####More practice:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).

#####Credits:
Special thanks to @Freezen for adding this problem and creating all test cases.

##解题思路
该题是求解和大于目标值的最小长度,比较容易想到的方法是采用滑动窗口的方法,满足滑动窗口中的元素和大于目标元素,且维护一个最小长度值,但是这种方法需要遍历一遍数组,整个时间复杂度为O(n)

有没有更加快速的方法,其实是有的,我们可以通过一个数组sum,sum[i]记录从0到i-1的所有元素之和,思路就是记录每个位置上到当前位置前面的和:sum[i] 为0->i-1的所有数字和,如果sum[i]>= 目标数字,就2分查找比sum[i]-target+1小且是最大的数字。如果找到,index=j那么j到i-1就是这个subarray, length=i-1-j+1=i-j。整体的时间复杂度能够达到O(nlogn)

##算法代码
代码采用JAVA实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
//时间复杂度为O(n)的方法
public class Solution {
public int minSubArrayLen(int s, int[] nums) {
//采用滑动窗口的方法
if(nums.length==0 || nums==null) return 0;
int head=0,tail=0,cursum=0;
int min=Integer.MAX_VALUE;
while(tail<nums.length)
{
cursum+=nums[tail];
while(cursum>=s){
min=Math.min(min,tail-head+1);
cursum-=nums[head];
head++;
}
tail++;
}
return min==Integer.MAX_VALUE?0:min;
}
}

//时间复杂度为O(nlogn)的方法
public class Solution {
public int minSubArrayLen(int s, int[] nums) {
if(nums.length==0 || nums==null) return 0;
//定义一个sum数组,其中存放当前位置之前的左右元素之和
int min=Integer.MAX_VALUE;
int[] sum=new int[nums.length+1];
for(int i=0;i<nums.length;i++)
{
sum[i+1]=sum[i]+nums[i];
if(sum[i+1]>=s){
int j=binarySearch(0,i,sum[i+1]-s+1,sum);
if(j>-1){
min=Math.min(min,i-j+1);
}
}
}
return min==Integer.MAX_VALUE?0:min;
}


int binarySearch(int left, int right, int target, int[] sum) {
int result = -1;
while (left < right-1) {
int m = left + (right-left)/2;
if (sum[m] >= target) {
right = m-1;
} else if (sum[m] < target) {
left = m;
}
}
if (sum[right] < target) {
return right;
} else if (sum[left] < target) {
return left;
} else {
return -1;
}
}

}

Comments