Distinct Subsequences

##题目

####Distinct Subsequences

Given a string S and a string T, count the number of distinct subsequences of T in S.

A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).

Here is an example:
S = "rabbbit", T = "rabbit"

Return 3.

##解题思路
该题是求T的字串在S中出现的次数,可以采用动态规划的思想。首先定义维护量res[i][j]:表示S的前i个字符和T的前j个字符有多少个可行的序列。递推式可以定义如下:

如果S的第i个字符与T的第j个字符不同,则res[i][j]的序列个数应该与res[i-1][j]的个数相同;
如果S的第i个字符与T的第j个字符相同,那么除了要考虑res[i-1][j-1]的个数情况,还要考虑res[i-1][j]的个数;
因此,递推式定义如下:
if(S.charAt(i)==T.charAt(j))
    res[i][j]=res[i-1][j-1]+res[i-1][j];
else
    res[i][j]=res[i-1][j];

##算法代码
代码采用JAVA实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
public class Solution {
public int numDistinct(String S, String T) {
//采用动态规划的思想,定义维护量res[i][j]:表示S的前i个元素和T的前j个元素能够匹配的转化方式
int[][] res=new int[S.length()+1][T.length()+1];
if(T.length()==0)
return 1;
if(S.length()==0)
return 0;
//进行初始化
for(int i=0;i<S.length()+1;i++)
{
res[i][0]=1; //表示当T为空时,不管S长度为多少,只有删除所有元素这一种转化方式
}

for(int i=1;i<S.length()+1;i++)
{
for(int j=1;j<T.length()+1;j++)
{
if(S.charAt(i-1)==T.charAt(j-1))
{
res[i][j]=res[i-1][j-1]+res[i-1][j];
}else{
res[i][j]=res[i-1][j];
}
}
}

return res[S.length()][T.length()];
}
}

Comments